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SUMMARY
Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution
imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines
are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-
to-end pipeline comprised of publicly available software packages that combines machine learning, dimen-
sionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling
states without the need for complex biochemical measurements or other prior information. We use LaMDA to
analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and
stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface,
accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling
after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands.
All instructions needed to implement LaMDA are included in this paper.
INTRODUCTION

Lattice light-sheet microscopy (LLSM) is a recently developed

microscopy technique that allows for four-dimensional (4D)

(x, y, z, and time) imaging with exceptionally high temporal reso-

lution (�100 frames/s, �1 cell volume/s) and minimal photo-

bleaching (Chen et al., 2014). LLSM provides high-dimensional,

high spatiotemporal resolution imaging data of cell surface re-

ceptors or receptor microclusters (R1,000) over a long duration

of time (R4 min) on the entire 3D surface of live primary cells. As

a result of these capabilities, LLSM and other cutting-edge mi-

croscopy techniques generate larger and more complex high-

dimensional data. These data are often underutilized due to a

lack of comprehensive and efficient high-dimensional analysis

pipelines that are accessible to the general user. The lack of

such an analysis pipeline represents a key limitation in the use

of imaging systems, including LLSM, that generate big data

and are crucial to answering biological questions at the single-

molecule level.

Here, we introduce lattice light-sheet microscopy multi-

dimensional analyses (LaMDA), a pipeline to apply big data anal-

ysis techniques to high-dimensional LLSM data. LaMDA

provides a complete end-to-end pipeline from upstream data

collection and feature engineering to downstream machine

learning and dimensionality reduction analyses. We intentionally

constructed LaMDA using publicly available packages to enable
Cell Systems 10, 433–444,
This is an open access article under the CC BY-N
easy adaptation and incorporation by general users to facilitate

broad application across all areas of cell biology. Moreover, it

was designed to motivate a paradigm shift wherein, rather than

focusing on the cell as the unit of study, we focus on a molecular

unit. The LaMDA pipeline supersedes the need for high-

throughput collection of single-cell time-lapse data, which is

difficult to capture using LLSM, by enabling extraction of suffi-

cient molecular content for the use of high-dimensional

analyses.

We applied LaMDA to image and analyze the dynamics of

T-cell receptors (TCR) microclusters on the primary T-cell sur-

face with high dimensionality to understand T-cell signaling

states. T cells play a central role in adaptive immunity by medi-

ating immune responses against cancer and infection (Janeway

et al., 2001; Kahan et al., 2015; Thommen and Schumacher,

2018). As the dominant receptor, TCRs govern the recognition,

activation, differentiation, and function of T cells in health and

disease (Janeway et al., 2001; Kumar et al., 2018). Our LaMDA

approach quantitatively revealed the global spatiotemporal dy-

namics of TCRs, reliably deciphered TCR microclusters from

T cells at different signaling states, precisely identified the roles

of co-stimulatory receptors, and accurately differentiated be-

tween T-cell stimulations triggered by structurally similar peptide

ligands of different affinities. In addition to uncovering new T-cell

biology, LaMDA can also be used to guide the pre-clinical

design, development, and improvement of immunotherapies
May 20, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 433
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Figure 1. LaMDA Pipeline

(A) 4D imaging is conducted with LLSM. Receptors (green) on a cell are fluorescently labeled and 4D images are collected. Scale bar represents 5 mm.

(B) After deconvolution and debleaching, receptor microclusters are tracked with Imaris software. Scale bar represents 5 mm.

(C) Microcluster features are extracted from tracked TCR microclusters.

(D) Machine learning is conducted on extracted features for prediction. (Left) To classify between different cell states, supervised XGboost decision tree en-

sembles are trained as a binary classifier then tested and validated. (Right) Unsupervised UMAP clustering is used to independently validate the XGboost binary

classifier. The XGboost binary classifier is used to predict the states of cells.

(legend continued on next page)
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and vaccines for cancer, infection, and autoimmunity. Further-

more, as a flexible and broadly applicable pipeline, LaMDA pro-

vides a framework for future studies of other surface receptors or

intracellular molecules on different cell types by directly linking

molecular dynamics to cell signaling and function.

RESULTS

LaMDA
LaMDAwas designed to enable big data analysis of high-dimen-

sional LLSMdata (Figure 1). To begin using LaMDA, LLSM is em-

ployed to capture single-cell images in four dimensions (x, y, z,

and time) with high spatiotemporal resolution (�1 s/cell volume,

x and y resolution�200 nm, and z step 400 nm) (Figure 1A; Video

S1). Then, advanced imaging software, such as Imaris, is utilized

to track thousands of surface receptor microclusters (or other

structures) from individual cells (Figure 1B) and extract multiple

(36 in this study) statistical parameters for each tracked object

simultaneously (Figure 1C). Due to the large size of collected da-

tasets, machine learning and dimensionality reduction methods

can be incorporated for analysis (Figures 1D and 1E). For

example, a machine learning-based classifier (Chen and Guest-

rin, 2016) could be built to learn the inherently subtle yet very

complex differences between the tracked receptors of two or

more known cellular conditions. This classifier could then be

used to predict the state of the receptor microclusters in new or

less-understood cellular conditions (Figure 1F). Furthermore,

feature importance metrics from the classifier can inform on the

underlying biological differences in the system (Figure 1G).

Once the classifier metrics are used to select important features,

they can be studied individually by building statistical models. To

understand if multiple parameters are working together to drive

biological differences, dimensionality-reduction techniques,

such as uniform manifold approximation and projection (UMAP)

(McInnes et al., 2018) and diffusion maps (Coifman and Lafon,

2006; Ferguson et al., 2010), could be applied in parallel (Figures

1D and 1E) to graphically emphasize three important points: (1)

these techniques cluster objects into several groups representa-

tive of different physical states; (2) the relative locations of these

object states informuson their relationships, indicatingdirection-

ality and identifying the properties that change with that direction

(Figure 1H); and (3) the local density at each coordinate on these

dimensionality-reduction maps can be further transformed into a

pseudo-energy surface to show relative stability of each object

(Figure 1I). Together, LaMDA uses high-dimensional imaging

and big data analyses to discover differentiating properties be-

tween cellular phenotypes and to reveal and predict underlying

cellular states (Figure 1J).
(E) Diffusion maps are used as a dimensionality reduction technique to further q

selected based on their importance.

(F) The XGboost classifier is utilized to provide cell state predictions based on T

(G) The importance of each feature in the XGboost classifier is evaluated using S

modeling.

(H) Diffusion map is colored by normalized features (e.g., track duration shown her

(S) cells.

(I) The diffusion map is transformed into a 3D pseudo-energy map by estimating l

used to analyze stability of tracked receptor microclusters across cell states.

(J) LaMDA pipeline applications, further detailed throughout paper.
LaMDA Discovers that TCRMicroclusters Reflect T-Cell
Activation State (Resting versus Stimulated), Not the
Functional Phenotype (Naı̈ve versus Blasting)
As a proof of concept of the LaMDA pipeline, we investigated the

dynamics of TCRs, one of the most critical molecules in adaptive

immunity and their relationship to T-cell activation. TCRs specif-

ically recognize rare agonist peptide-major histocompatibility

complexes (pMHCs) among numerous self-pMHCs on the sur-

face of the cell being surveyed to trigger adaptive immune re-

sponses and therefore are essential molecules to combat

infection and cancer (Chakraborty and Weiss, 2014; van der

Merwe and Dushek, 2011). TCRs are known to form microclus-

ters on the surface of the T cell and represent a key mechanism

toward understanding T-cell signaling and function (Campi et al.,

2005; Crites et al., 2014; Gagnon et al., 2012; Hashimoto-Tane

et al., 2016, 2011; Hu et al., 2016; Huang et al., 2013;

Hui et al., 2017; Lewis et al., 2018; Lillemeier et al., 2010; Muru-

gesan et al., 2016; Roh et al., 2015; Sasmal et al., 2020;

Schamel et al., 2005; Smoligovets et al., 2012; Taylor et al.,

2017; Varma et al., 2006; Wang et al., 2019b; Yi et al., 2019; Yo-

kosuka et al., 2005).

To visualize the 4D TCR microcluster dynamics by LLSM, we

either fused a green fluorescent protein (GFP) to the C-terminus

of the CD3z chain of the TCRs or used an Alexa Fluor 488

(AF488)-conjugated anti-TCRb Fab to fluorescently label the

TCRs at the membrane of live primary 5C.C7 CD4+ T cells. Cyto-

solic mCherry-transduced CH27 cells were used as the antigen-

presenting cells. After fluorescent labeling of TCRs on T cells and

loading agonist moth cytochrome C (MCC) peptide onto the an-

tigen-presenting cells, both the T cells and antigen-presenting

cells were added to the LLSM imaging chamber for 4D imaging

using 488- and 561-nm lasers. We recorded videos (4–6 min) of

TCR microclusters across the entire 3D cell surface (x and y res-

olution �200 nm, z step 400 nm, �1 s/cell volume; Figures 2A–

2D and S1A–S1G; Videos S1, S2, S3, S4, S5, S6 and S8) for

four T-cell states: resting naı̈ve, naı̈ve stimulated by antigen-pre-

senting cells, resting blasting, and blasting stimulated by anti-

gen-presenting cells (Figure 2E).

We then tracked �10,000 individual TCR microclusters on

each T cell, measuring 36 parameters (including speed, direc-

tion, volume, intensity, area, location, and track duration; see

STAR Methods for details) for each microcluster across the

videos (Figures 2B, 2D, and S1K; Video S7). The data were

pre-processed and an extreme gradient boosted (XGboost) de-

cision tree ensemble (Chen and Guestrin, 2016) with logistic loss

was built on 19 of these parameters (Figures 2F and S1H–S1K,

referred to henceforth as the XGboost classifier) to classify

TCR microclusters as microclusters from resting T cells or
uantify variations among cell states. The diffusion map is built from features

CR microcluster features.

HAP, and the top feature is individually analyzed using appropriate statistical

e). Dotted line indicates approximate divide between resting (R) and stimulated

ocal density of datapoints on the diffusion map. The 3D pseudo-energy map is
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Figure 2. XGboost Binary Classifier Differentiates between T-Cell Signaling States

(A) 3D rendering of a blasting CD4+ T cell stably transduced with CD3z-GFP (green) as it encounters a CH27 cell stably transduced with cytosolic mCherry (red).

See also Video S1.

(B) Dragon tails showing particle positions over the previous eight frames overlaid onto (A). Color bar represents velocity angle X from 0� (purple) to 180� (red).
(C) 3D rendering of a blasting resting CD4+ T cell stably transduced with CD3z-GFP (green). See also Video S2.

(D) Dragon tails showing particle positions over the previous eight frames overlaid onto (C). Color bar represents velocity angle X from 0� (purple) to 180� (red).
(E) Diagram depicting the four cell states, resting naı̈ve, resting blasting, stimulated naı̈ve, and stimulated blasting, graphically.

(F) XGboost training results. Each bar represents an independent cell (resting naı̈ve cells n = 58,784 microclusters; stimulated blasting cells n = 97,237 micro-

clusters). Pred, prediction. See also Figure S1K for number of microclusters in each cell.

(G) XGboost testing results. Each bar represents an independent cell (stimulated naı̈ve cells, n = 38,809 microclusters; resting blasting cells, n = 60,116

microclusters). Pred, prediction. See also Figure S1K for number of microclusters in each cell.

(legend continued on next page)
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stimulated T cells. To avoid strong correlation within the same

cells, and to prevent the confounding effect of ‘‘past stimulation’’

(i.e., naı̈ve versus blast), the XGboost classifier was first trained

on microclusters from stimulated blast cells and resting naı̈ve

cells (Figure 2F). The classifier was later tested on stimulated

naı̈ve cells and resting blast cells (Figure 2G). Within the training

set, a train-validate-test approach was utilized to avoid overfit-

ting (see STAR Methods; Figure S1I). The XGboost classifier

consists of 150 decision trees, each of which selects up to three

parameters to fit a logistic regression model. The weighted

values from all 150 trees are used to classify each microcluster

(Figure S1H).

This classifier allows us to identify which observable features

of TCR dynamics can function as signatures of a cell’s state

and allows for classification. For example, we hypothesized

that because TCR microclusters behave differently in response

to a stimulation (e.g., TCR-pMHC interaction) (Campi et al.,

2005; Lillemeier et al., 2010; Varma et al., 2006; Yi et al., 2019),

TCR microclusters switch from a ‘‘resting state’’ into a ‘‘stimu-

lated state’’ and thus could be differentiated by machine

learning. Indeed, in the internal test, the XGboost classifier could

precisely differentiate between TCRmicroclusters on the resting

naı̈ve T cell from those on a stimulated blasting T cell with a vali-

dation accuracy of 100% and an internal test accuracy of

99.96% (Figure 2F). This suggests that our machine learning

model can reliably predict the cell state, that is resting naı̈ve

versus stimulated blasting, by TCRmicrocluster dynamics alone.

Accordingly, when a similar analysis was performed on two other

T-cell states, stimulated naı̈ve and resting blasting, we found

large differences between TCRmicrocluster dynamics on stimu-

lated and resting T cells, which allowed for accurate discrimina-

tion based on cell state by XGboost (Figure 2G). These results

demonstrate that TCR microcluster dynamics are sufficient to

predict cell state. Notably, however, the prediction of cell state

is irrespective of prior antigen experience; the XGboost classifier

could not distinguish between naı̈ve and blasting T cells (Figures

2F and 2G). These results demonstrate that machine learning

can precisely predict T cell signaling states (resting state versus

stimulated state) using surface TCR dynamics, but that from the

perspective of the TCR dynamics, naı̈ve and blasting T cells are

indistinguishable. This observation is not unique to the XGboost

classifier. TCR microclusters can also be segregated into two

groups, resting-state TCR microclusters and stimulated-state

TCR microclusters, using the dimensionality reduction method,

UMAP (McInnes et al., 2018) (Figures 2H and 2I, decision bound-

ary in dark blue and Figure S2A).

Since the dynamic features of TCR microclusters represent a

direct reflection of the T-cell signaling states, we next sought

to use big data analysis techniques to investigate which biolog-

ical features contributed to the observed differences. To further

understand the features predicted by the XGboost classifier, we
(H) UMAP of data from (F–G) with color indicating cell group. Boundary line repr

(I) UMAP of data from (F–G) with color indicating probability of microcluster to be

Probability was indicated by color scale (0.00–1.00). Boundary line represented

(J) SHAP values of each property of the microcluster in XGboost binary classifie

(K) Weibull distribution fitting of microcluster track duration from stimulated blas

(L) Table of mean track duration for each cell group obtained by Weibull distrib

goodness of fit is indicated by R2 values. Scale bars, 5 mm.
plotted the shapley additive explanations (SHAP) values (Lund-

berg and Lee, 2017a, 2017b) and found that track duration

(i.e., the length of time a microcluster could be detected on the

cell surface) was the most important feature (Figures 2J and

S2B). While large SHAP values only directly indicate the features

most informative to the decision trees, these features are often

biologically relevant. Thus, we plotted the distribution of track

duration for resting naı̈ve, stimulated naı̈ve, resting blasting,

and stimulated blasting T cells and fitted three-parameter Wei-

bull distribution models, a commonly used model for lifetime an-

alyses (Lawless, 2002) (Figures 2K and S2C–S2F). The mean

duration ‘‘T’’ was derived from the Weibull distributions (see

STAR Methods) and describes the average lifetime of TCR mi-

croclusters on the surface of a T cell. We determined that antigen

stimulation increased the mean duration of TCR microclusters

significantly when compared with resting state, for both naı̈ve

and blasting T cells (Figures 2L and S2F). This implies a signaling

pathway was initiated to alter global control of TCR microclus-

ters on the surface.

Next, we characterized TCR microcluster dynamics using

diffusion maps, a nonlinear dimensionality reduction technique

that focuses on identifying the underlying manifold of the data

and reveals diffusion-like behavior between different states

(Coifman and Lafon, 2006; Ferguson et al., 2010). We sampled

8,000 microclusters from each cell group and chose a subset

of 7 selected features (mean intensity, minimum intensity, inten-

sity sum over the surface, area, volume, speed, and track

duration) based on the XGboost classifier feature importance

(as previously shown in Figure 2J) and their mutual indepen-

dence (see STAR Methods). This diffusion map allowed us to

graphically compare resting-state TCRs with stimulated-state

TCRs (Figure 3A). We next estimated the local density of TCRmi-

croclusters on the diffusion map (Figure 3B) and derived the 3D

pseudo-free energy surface (see STAR Methods) by adapting a

method commonly used in molecular simulation research (Fig-

ure 3C) (Ferguson et al., 2010). For easy visualization and com-

parison, these 3D energy wells were projected along dimension

2 to become 2D energy wells (Figure 3D). Assuming all other

terms that contribute to energy are held constant, the depth of

the energy well directly revealed the stability of the TCR micro-

clusters on each cell (Figure 3D).

We found the stimulated-state TCR microclusters occupy a

much deeper energy well than the resting-state TCR microclus-

ters, on both blasting and naı̈ve T-cell surfaces (Figure 3D),

demonstrating that, assuming all other terms that contribute to

energy are held constant, TCR stimulation stabilizes TCR micro-

clusters on the cell surface. We also analyzed the diffusion maps

to compare individual dynamic features between resting and

stimulated TCR microclusters (Figures 3E–3H, middle panel).

For track duration, we found clear separation between resting-

state and stimulated-state TCR microclusters in the diffusion
esented in dark blue.

a stimulated blasting microcluster as predicted by XGboost binary classifier.

in dark blue.

r.

ting cells to obtain mean track duration. See also Figures S2C–S2F.

ution fittings. Data are presented as mean ± standard deviation (SD) and the
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Figure 3. Diffusion Maps Differentiate between T-Cell Signaling States

(A) Diffusion map built from 7 selected features. Colors indicate cell group.

(B) Density map created by estimating local density on the diffusion map (A). Colors indicate cell group.

(C) Pseudo-energy map created from density map (B). Colors indicate cell group.

(D) Projection of pseudo-energy map (C) along dimension 2. Colors indicate cell group.

(E–H) Left: resting naı̈ve cell from Figure S1A overlaid with dragon tails showing particle positions over the previous eight frames are color coded to show particle

track duration from 0 s (purple) to 25 s (red) (E), particle speed from 0.0 mm/s (purple) to 0.5 mm/s (red) (F), particle intensity minimum from 0 AU (purple) to 500 AU

(red) (G), or particle volume from 0.0 mm2 (purple) to 0.2 mm2 (red) (H). Center: diffusion map from Figure 3A colored by normalized track duration (E), speed (F),

intensity minimum (G), or volume (H). Approximate boundary line between resting (R) and stimulated (S) cells (see also Figure 3A) represented in black. Right:

Stimulated blasting cell from Figure S1D overlaid with dragon tails showing particle positions over the previous eight frames are color coded to showparticle track

duration from 0 s (purple) to 25 s (red) (E), particle speed from 0.0 mm/s (purple) to 0.5 mm/s (red) (F), particle intensity minimum from 0 AU (purple) to 500 AU (red)

(G), or particle volume from 0.0 mm2 (purple) to 0.2 mm2 (red) (H).
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Figure 4. TCR Ligand Discrimination by LaMDA

(A) XGboost prediction results on microclusters from blasting cells stimulated with MCC (n = 97,237 microclusters), K5 (n = 24,786 microclusters), and 102S

(n = 46,218 microclusters), and unstimulated resting cells (n = 58,784 microclusters). Each bar represents an independent cell. See also Figure S1K.

(B) Table of peptide sequences for MCC, K5, and 102S.

(C–F) 3D renderings of blasting cells stimulated with MCC (C), K5 (D), and 102S (E) and unstimulated resting blasting cells (F). All images are overlaid with dragon

tails showing particle positions over the previous eight frames are color coded to show particle track duration (0–25 s). Scale bars, 5 mm.

(G and H) Weibull distribution fitting of microcluster track duration from blasting cells stimulated with K5 (G) or 102S (H). See also Figure S2F.

(I) Diffusion map built from the same selected features as Figure 3A, with colors indicating cell groups.

(J) Density map created from (I).

(legend continued on next page)
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map (Figure 3E). Similar distinctions between resting-state and

stimulated-state TCR microclusters were found for speed (Fig-

ure 3F) and minimum intensity (Figure 3G), whereas the differ-

ences in volume (Figure 3H) were less obvious. These analyses

reinforced the reliability of our machine learning prediction.

Spatially, we observed that the longest lasting microclusters

(red) are not localized to the synapse as would be expected

due to the TCR-pMHC bonds, but rather are dispersed

throughout the whole cell (Figure 3E, right panel); similar global

distributions were found for speed, minimum intensity, and vol-

ume (Figures 3F–3H, right panels), indicating that T cell activation

is a global event.

Taken together, our data suggest that TCR microclusters

directly reveal different signaling states of a T cell and support

current biological understanding of TCR dynamics. It is known

that TCR microcluster dynamics are closely linked with the actin

network, which globally reorganizes with TCR-pMHC binding

and signaling (Ritter et al., 2015; Billadeau et al., 2007; Bunnell

et al., 2001; Fritzsche et al., 2017; Kumari et al., 2014; Roy and

Burkhardt, 2018; Tsopoulidis et al., 2019; Valitutti et al., 1995).

Accordingly, we observe that TCRs initially concentrated at the

distal pole, quickly dispersed into small TCR microclusters and

then continuously trafficked to the immunological synapse

across the 3D spherical surface of the T cell (Figures S3A–

S3D; Videos S5 and S6). Notably, after dividing the TCR

microclusters between inside and outside synapse (Figures

S3E–S3G), LaMDA was unable to identify differences between

microclusters inside and outside the synapse (Figures S3H–

S3J). This suggests that TCR triggering at the synapse propa-

gates rapid, global re-organization of TCRs for effective antigen

recognition and signaling. To our knowledge, such global, dy-

namic, and directional structural changes of TCR microclusters

on the 3D T-cell surface had not yet been observed using con-

ventional microscopy techniques or other biochemical or bio-

physical assays.

4D TCR Microcluster Dynamics Enable Ligand
Discrimination
TCR ligand discrimination is essential for adaptive immunity.

The dysfunction of TCR ligand discrimination can directly lead

to cancer, infection, or autoimmunity. Moreover, TCR ligand

discrimination displays two important characteristics: (1) high

sensitivity—TCRs can recognize even a single agonist pMHC

in the presence of abundant self-pMHCs (Huang et al., 2013;

Irvine et al., 2002); and (2) high specificity—TCRs can discrim-

inate between structurally similar peptides and elicit distinct im-

mune responses (Alam et al., 1996; Huang et al., 2010; Kersh

et al., 1998). Despite its critical importance, the molecular

mechanism of TCR ligand discrimination remains controversial

(van der Merwe and Dushek, 2011). A common problem is that

most existing mechanistic models were proposed based on

in vitro studies that often cannot reliably predict physiological

events in vivo. One example is that the high-affinity, slow off-
(K) 3D pseudo-energy map created from (J) of blasting cells stimulated with MCC

groups.

(L) Projection of pseudo-energy map from (K) along dimension 2.

(M) Separate XGboost classifier built to differentiate microclusters from cells stim

(N) SHAP values of each feature as used in XGboost binary classifier in (M).

440 Cell Systems 10, 433–444, May 20, 2020
rate, and high-potency (as defined by in vitro measurements)

K5 peptide triggers attenuated in vivo T-cell responses (Corse

et al., 2010), and such experimental data cannot be explained

by the prevailing kinetic models that were built based on

in vitro binding affinity and/or half-life (Chakraborty and Weiss,

2014; Corse et al., 2010; van der Merwe and Dushek, 2011). In

order to overcome the limitations imposed by in vitro studies,

we applied our LaMDA approach to study TCR ligand discrim-

ination to evaluate whether it can accurately predict physiolog-

ical in vivo T-cell responses.

First, we confirmed that our experimental setup accurately re-

flects well-understood TCR biology by recapitulating previous

observations of TCR’s co-receptor CD4, a monomeric polypep-

tide that plays an important role in augmenting TCR signaling

through associated tyrosine kinase Lck (Rudd et al., 1988; van

der Merwe and Davis, 2003; Veillette et al., 1988; Chen and Flies,

2013; Janeway et al.,1988; Janeway 1992), and CD28, a co-

stimulatory receptor required to fully activate the T cells without

causing apoptosis (Boise et al., 1995; Esensten et al., 2016; Lins-

ley and Ledbetter, 1993; Jenkins et al., 1988; Mueller et al.,

1989). As expected, we observed that CD4 blockade (and Lck in-

hibition) and CD28 blockade impairs entry into the full stimulated

state and significantly reduces the stability of TCR microclusters

(Figures S4A–S4N and S2F). These observations support the

conclusion that using LaMDA for observations of TCR dynamics,

diverse signaling states can be identified without the need for

complex biochemical or functional assays. Next, we measured

the TCR microcluster dynamics stimulated by three structurally

similar peptides K5, MCC, and 102S using LLSM (Figure 4B)

(Corse et al., 2010). We then applied the same XGboost classifier

trained on MCC-stimulated versus unstimulated TCRmicroclus-

ters to this dataset. The XGboost classifier predicted that

�89.3% and�76.1%of themicroclusters stimulated by variants

K5 and 102S, respectively, are in the stimulated state (Figure 4A).

This indicates that both K5 and 102S stimulations resulted in par-

tial activation, consistent with previous in vivo studies, which

showed that both K5 and 102S peptides resulted in attenuated

immune responses compared with the MCC peptide (Corse

et al., 2010). Consistent with machine learning, we found that

the Weibull-derived average lifetimes of 102S- and K5-stimu-

lated microclusters were similar to those of MCC-stimulated

microclusters but significantly different from those of resting mi-

croclusters (Figures 4C–4H and S2F).

To systematically study TCR ligand discrimination, we plotted

a diffusion map of the TCRmicroclusters stimulated by the three

structurally similar peptides K5, MCC, and 102S (Figures 4I and

4J). After converting the diffusion map to 3D (Figure 4K) and 2D

(Figure 4L) energy wells, we were able to clearly visualize

different activation states of T cells. Compared with the

resting-state T cells without stimulation (blue), MCC-mediated

stimulation (dark blue) induced the formation of the most stable

TCR microclusters, while K5 (dark green) and 102S (green) re-

sulted in less stable TCR microclusters. Our findings are well
, K5, and 102S peptides, and resting blasting cells, with colors indicating cell

ulated with MCC, K5, or 102S.
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aligned with a previous in vivo study by Allison and colleagues

showing that theMCCpeptide, rather than the K5 and 102S, trig-

gers the optimal intracellular signaling, cytokine production, and

cell proliferation (Corse et al., 2010).

Additionally, to fully testwhetherwe can applymachine learning

toTCR liganddiscrimination,we trainedanother XGboost softmax

classifier to distinguish between the TCR microclusters on T cells

stimulated by MCC, K5, and 102S. We found that this alternative

machine learningapproachcouldbeused topreciselydifferentiate

between the TCR microcluster organization following stimulation

by the three structurally similar peptides with �96% accuracy

(for training, validation, and test datasets) (Figures 4M and 4N).

We expect our LaMDA pipeline can be extended to a wide range

of ligand discrimination systems and detect subtle yet important

dynamic differences between cell states, which provides a more

physiologically relevant approach to study immune molecules

and cells in cancer, infection, and autoimmunity.

DISCUSSION

We developed a modular pipeline, LaMDA, that combines high

resolution 4D LLSM data with machine learning and dimension-

ality reduction techniques to analyze TCR microcluster dy-

namics and predict T-cell signaling states. In contrast to many

studies that emphasize differences between naı̈ve and blasting

T cells, our LaMDA pipeline identified that the dynamics and dis-

tribution of TCR microclusters were primarily determined by the

T-cell activation state (resting versus stimulated), rather than by

prior antigen exposure (naı̈ve versus blasting) (Figures 2 and 3).

Using LaMDA, we also demonstrated that, assuming all other

terms that contribute to energy are held constant, TCR-pMHC

ligation stabilizes TCR microclusters globally across the entire

T-cell surface (Figure S3), which has largely been overlooked in

the past. Finally, we demonstrated that the same pipeline can

be extended to study ligand discrimination (Figure 4).

In this study, we found that both K5- and 102S-mediated stim-

ulation of T cells resulted in partial activation when compared

with MCC (Figure 4). Our observations complement in vivo

studies that have shown the K5 peptide results in attenuated im-

mune responses compared with the MCC peptide (Corse et al.,

2010) but stand in contrast to in vitro studies that have previously

shown that K5 is a super-agonist with the highest TCR affinity

and results in the strongest activation of T cells among three

peptides (Corse et al., 2010; Li et al., 2004; Rabinowitz et al.,

1996; Reay et al., 1994). This suggests that unlike common

in vitro approaches, our LaMDA pipeline may be able to predict

in vivo peptide potency in activating T cells and could be

extended toward the development of peptide vaccines to treat

infection, cancer, and autoimmunity (Hos et al., 2018; Li et al.,

2014) or be used to study thymic education and/or peripheral

tolerance, two very important topics in T-cell biology.

LLSM has been widely used across many biological fields to

address a variety of questions (Cai et al., 2017; Chen et al.,

2014; Condon et al., 2018; David et al., 2019; Ellefsen and

Parker, 2018; Fritz-Laylin et al., 2017; Gao et al., 2019; McArthur

et al., 2018;Mir et al., 2018a, 2018b; O’Shaughnessy et al., 2019;

Phillips et al., 2019; Ritter et al., 2015). While LLSM has revealed

important insights, current analysis approaches are not capable

of considering all of the collected data to maximize the biological
understanding or conclusions that could be drawn from the data.

Most analysis approaches employed for investigating cell

biology primarily focus on single features, such as intensity, co-

localization, autocorrelation, diffusion rates, resolution, or direc-

tional analyses (Thorn, 2016; van der Merwe and Davis, 2003).

The LaMDA pipeline is able to take full advantage of the 4D (x,

y, z, and time) data intrinsically provided by LLSM and utilizes

it in a myriad of advanced high-dimensional analysis tools,

such as dimensionality reduction techniques and machine

learning. However, LLSM is a low-throughput method regarding

cell number, and if each cell is treated as a single data point, suf-

ficient numbers for high-dimensional analysis methods cannot

be reached. Thus, by considering individual molecules (e.g.,

TCRs) on the cell surface as opposed to single cells captured

by LLSM, we are able to provide sufficient data points in a

high-throughput manner to utilize these methods. By enacting

the paradigm shift from single cell to single molecule in LLSM,

the utility of data produced can be maximized.

In addition to surface molecules, this pipeline can still be used

to track intracellular or recyclingmolecules. The analysis pipeline

presented here could simply be used to address different ques-

tions. For example, LLSM has already been used to image and

track T-cell granzymes, which are cell-death-inducingmolecules

packaged in intracellular vesicles and delivered to the surface of

a target cell (Ritter et al., 2015). Our analysis pipeline therefore

could analyze the tracks of these vesicles and address trafficking

rates or directions. While any molecular label can be easily im-

plemented, a large number of fluorescently detectable molecular

units must exist in the biological system, highlighting an impor-

tant consideration in implementing LaMDA for other studies.

Finally, LaMDA was intentionally designed to utilize existing

tools and algorithms to perform complexmulti-dimensional anal-

ysis, thereby enabling easy accessibility for any biologist without

the need for familiarity with data science techniques. Moreover,

while we used Imaris for feature extraction and an XGboost clas-

sifier for machine learning, this pipeline is highly modular and can

be adapted for a variety of biological systems by incorporating

alternative algorithms. Other machine learning techniques with

different algorithms (e.g., XGboost or supportive vector ma-

chine), architectures (e.g., decision trees or neural network) or

tasks (e.g., classification, segmentation, or detection) can be

incorporated to substitute the XGboost classifier. In addition,

multiple dimensionality reduction techniques are applicable

(e.g., tSNE, PCA, etc.), and should be chosen based on desired

purpose. Similarly, features do not have to be pre-defined and

extracted from a software such as Imaris; rather, researchers

could engineer context-specific features useful to their own

research questions. Therefore, we anticipate broad usage of

LaMDA to maximize biological understanding from LLSM data.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor 488 anti-mouse TCR b

chain Antibody

BioLegend Cat# 109215; RRID: AB_493345

Purified anti-mouse CD4 Antibody BioLegend Cat#: 100401; RRID: AB_312686

Purified anti-mouse CD28 Antibody BioLegend Cat#: 102101; RRID: AB_312866

Purified anti-mouse anti-CD3ε University of Chicago Monoclonal

Antibody Facility

Clone 145-2C11; RRID: AB_312666

Chemicals, Peptides, and Recombinant Proteins

RBC Lysis Buffer eBioscience Cat#: 00-4300-54

Moth Cytochrome C (MCC), sequence

ANERADLIAYLKQATK

Elimbio N/A

K5, sequence ANERADLIAYFKAATKF Elimbio N/A

102S, sequence ANERADLIAYLKQASK Elimbio N/A

Ficoll-Paque Plus GE Healthcare Cat#: 17-1440-02

Recombinant mouse IL-2 Sigma-Aldrich Cat#: I0523

Poly-L-Lysine Phenix Research Products Cat#: P8920-100ML

PP2 (4-Amino-5-(4-chlorophenyl)-7-

(t-butyl)pyrazolo[3,4-d]pyrimidine)

Millipore Sigma Cat#: P0042

Retronectin Clontech Cat#: T100A

Recombinant human IL-2 Peprotech Cat#: AF-200-02

Critical Commercial Assays

MojoSort Mouse CD4 T Cell Isolation Kit BioLegend Cat#: 480033

Thermo Scientific Pierce Fab Micro

Preparation Kits

Thermo Fisher Scientific Cat#: 44685

Experimental Models: Cell Lines

Mouse: CH27-mCherry Laboratory of Dr. Enfu Hui N/A

Experimental Models: Organisms/Strains

Mouse: B10.A-Rag2-/- H2-T18a Tg

(Tcra5CC7,Tcrb5CC7)

NIH N/A

Recombinant DNA

MIG-CD3z-GFP Laboratory of Dr. Hans Schrieber N/A

Software and Algorithms

Slidebook 3i https://www.intelligent-imaging.com/slidebook

Imaris Oxford Instruments https://imaris.oxinst.com/

LLSpy LLSpy was used under license

from Howard Hughes Medical Institute,

Janelia Research Campus. Contact

innovation@janelia.hhmi.org for access.

https://llspy.readthedocs.io/en/latest/

R CRAN https://www.r-project.org/

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Deposited Data

Raw data This paper https://doi.org/10.5281/zenodo.3743835

Other

Lattice Light-Sheet Microscope 3i N/A

5mm round coverslips World Precision Instruments Cat#: 502040
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to, and will be fulfilled by, the corresponding author Jun Huang

(huangjun@uchicago.edu).

Materials Availability
This study did not generate unique reagents.

Data and Code Availability
All data that support the findings of this study are available at the following link: https://doi.org/10.5281/zenodo.3743835.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

5C.C7 TCR-transgenic RAG2 knockout mice in B10.A background aged 8-9 weeks were used in this study. Animals of both sexes

were used and the influence of sex was not considered in the analysis of the data. All experiments were conducted according to pro-

tocols approved by the Institutional Animal Care and Use Committee of the University of Chicago.

METHOD DETAILS

Cell Culture
Cytosolic mCherry-transduced CH27 cells were a gift generously donated by Dr. Enfu Hui. To obtain blasting T cells, 5C.C7 mouse

spleen was harvested and run through a 70 mm cell strainer with warm complete RPMI. Splenocytes were resuspended in 5 mL of

RBC Lysis Buffer (Life Technologies) for 5 min, washed three times, and resuspended in 5 mL of complete RPMI. MCC peptide

(ANERADLIAYLKQATK; 10 mM) was added to stimulate T-cell proliferation, and recombinant mouse IL-2 (100 U/mL, Sigma-Aldrich)

was added the following day. Blasting T cells were used on days 6–10 after peptide pulsing. mCherry-CH27 cells and 5C.C7 blasting

T cells were both maintained in complete medium (RPMI 1640 supplemented with 10% [v/v] FBS, 1% [v/v] Pen/Strep, L-glutamine

[2 mM], 2-mercaptoethanol [50 mM]).

Cell Preparation
Cells were prepared as previously described (Rosenberg and Huang, 2020). Briefly, mCherry-CH27 cells were used as antigen pre-

senting cells for imaging experiments. Dead mCherry-CH27 cells were first removed by Ficoll-Paque Plus (GE Healthcare, cat:

17-1440-03) density gradient centrifugation (centrifuged at 930 3 g for 10 min at 4 �C, acc/dec: SLOW/SLOW). Live mCherry-

CH27 cells were washed three times with complete medium, and then incubated with 10 mM K5 (ANERADLIAYFKAATKF), MCC

(ANERADLIAYLKQATK) or 102S (ANERADLIAYLKQASK) for 3 h at 37 �C and 5% CO2. Peptide-pulsed mCherry-CH27 cells were

then washed three times and resuspended in imaging media (phenol red-free Leibovitz’s L-15 medium supplemented with 10%

[v/v] FBS, 1% [v/v] Pen/Strep, L-glutamine [2 mM]) for use.

Naı̈ve T cells were prepared by negative isolation using 5C.C7 transgenic mouse spleens. Mouse splenocytes were prepared by

Ficoll-Paque Plus (GE Healthcare, cat: 17-1440-03) density gradient centrifugation (centrifuged at 930 3 g for 10 min at 4 �C,
acc/dec: SLOW/SLOW) to remove dead cells. Naive CD4+ T cells were then harvested by negative isolation (MojoSort Mouse

CD4 T Cell Isolation Kit, BioLegend, cat: 480033). Cells were washed three times with complete medium and incubated with

Alexa488-labeled anti-TCRb (2 mg; clone H-57, Biolegend) antibody Fab for 30 min at 37 �C and 5% CO2. After three washes, naı̈ve

T cells were resuspended in imaging media for use.

Day 6-10 blasting T cells were prepared by Ficoll-Paque Plus (GE Healthcare, cat: 17-1440-03) density gradient centrifugation

(centrifuged at 9303 g for 10min at 4 �C, acc/dec: SLOW/SLOW) to remove dead cells. Live blasting T cells werewashed three times

with complete medium and incubated with Alexa488-labeled anti-TCRb (2 mg; clone H-57, Biolegend) antibody Fab for 30 min at 37
�C and 5% CO2. After three washes, blasting T cells resuspended in imaging media for use.

CD3z-GFP Transduction
Primary 5C.C7 T cells were retrovirally transduced with CD3z-GFP according to a previously published method (Leisegang et al.,

2016). Briefly, calcium phosphate precipitation was used to transfect MIG-CD3z-GFP vector into ecotropic platinum-E retroviral

packaging cells. Supernatant containing virus was harvested after 48 and 72 h and filtered through 0.2 mm cellulose acetate mem-

brane. Splenocytes isolated from 5C.C7 mice cultured in complete RPMI were stimulated with anti-CD3εmAb (5 mg/mL; Clone 145-

2C11, University of Chicago Monoclonal Antibody Facility), anti-CD28 mAb (0.5 mg/mL; Clone 37.51, Biolegend), and recombinant

human IL-2 (40 U/mL; Peprotech). A 6-well plate was coated with Retronectin (12.5 mg/mL; Clontech) in PBS at 4 �C overnight,

then centrifuged for 90 min at 3,000 x g with 2 mL of viral supernatant. Day 1 activated splenocytes were transferred to plate with

viral supernatant, protamine sulfate (4 mg/mL) was added, and plate was centrifuged at 800 3 g for 90 min. After 24 h, medium

was replaced with fresh viral supernatant containing protamine sulfate (4 mg/mL), and plate was centrifuged at 800 3 g for

90 min. After 16 h, transduction efficiency was determined by examining GFP fluorescence using flow cytometry.
e2 Cell Systems 10, 433–444.e1–e5, May 20, 2020

mailto:huangjun@uchicago.edu
https://doi.org/10.5281/zenodo.3743835


ll
OPEN ACCESSReport
Fab Preparation
All Fabs used in this study were prepared using a Micro Fab Preparation Kit (Thermo Fisher Scientific). Briefly, anti-TCRb, anti-CD4,

and anti-CD28whole antibodies were preparedwith desalting column, then digestedwith papain, a nonspecific thiol-endopeptidase,

for 6 h on tabletop shaker at 37 �C. Digested Fabs were purified according to kit instructions. Fab purification was confirmed with

SDS-PAGE gel electrophoresis.

Signaling Perturbation Assays
For PP2 assay, day 6-10 blasting T cells were pre-incubated with PP2 (10 mM; 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]

pyrimidine; Sigma-Aldrich) for 1 h at 37 �C and 5% CO2. Pre-treated cells were imaged at 37 �C and 5% CO2 in the presence of

10 mM PP2.

For CD4 and CD28 blockade, an anti-CD4 (clone Gk1.5, BioLegend) or anti-CD28 (clone 37.51, BioLegend) Fab was prepared and

purified with Micro Fab Preparation Kit (Thermo Fisher Scientific). Day 6-10 T cells were pre-incubated for 1 h at 37 �C and 5% CO2

with anti-CD4 Fab (2 mg/mL) or anti-CD28 Fab (4 mg/mL) then imaged in the presence of 2 mg/mL Fab.

Lattice Light-sheet Microscopy
Version 2 of the Lattice Light Sheet Microscope (3i) was used for 4D imaging experiments. The LLSM was aligned daily according to

manufacturer’s instructions. LLSM bath was filled with imaging media and warmed to 37 �C. Round coverslips (5 mm) were prepared

prior to imaging by incubation with 0.1% [w/v] solution of Poly-L-Lysine for 30min. Poly-L-Lysine was aspirated, and coverslips were

allowed to dry. To prepared coverslips were added 200,000 peptide-pulsed mCherry-CH27 cells. Cells were allowed to settle for

10 min before adhering to sample holder and placing in LLSM bath. T cells (200,000) were added dropwise to the LLSM bath above

the coverslip and imaged immediately. Imaging was conducted with dither set to 3 and 10ms exposures. Z-steps (60) were collected

with a 0.4 mm step size. Cells were imaged for no more than one hour before exchanging with fresh cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Processing
Data were deskewed and deconvolved using LLSpy (cudaDeconv) software, used under license from Howard Hughes Medical

Institute, Janelia Research Campus; collected point spread functions (PSF, collected under imaging conditions) were used to decon-

volve, and 20 iterations were conducted. Bleach correction was conducted in ImageJ using histogrammatching. Deskewed, decon-

volved, and debleached videos were imported into Imaris (Bitplane) for rendering and tracking. Tracking TCRmicroclusters was con-

ducted with the ‘‘surfaces’’ module using the Autoregressive Motion Expert tracking method; any two consecutive surfaces were

allowed to move a maximum distance of 0.5 mm and disappear for no more than 3 frames to be considered on one track; watershed

was not enabled. The surfacesmodule was also used to create a surface of the antigen presenting cell, and a distancemapwasmade

extending outward from the antigen presenting cell surface. Surfacemodule statistics were exported for every TCR surface. Thus, for

all following sections of the STAR Methods, ‘‘surfaces’’ or ‘‘surface modules’’ refer to the segmentation and tracking of TCR micro-

clusters conducted by Imaris.

Data Preprocessing
For each cell, the raw surface module statistics from the TCR microcluster tracks were imported and processed in R as follows. All

non-numerical or missing statistics values were removed. All statistical variables were then combined into a dataframe with rows as

unique surface modules and columns as the different statistical variables, including track-specific variables. For the initial parameter

extraction from Imaris, 36 variables out of 134 available parameters were collected (see Data Sharing and Availability for complete

list). These variables were selected by refraining from fitting a certain shape to the surface unit, thus removing all shape-specific fea-

tures such as ‘‘BoundingBoxAA Length’’ or ‘‘Ellipsoid axes’’. Additionally, only first-order measurements were included where first

and second order are available, so as to minimize errors in tracking; for example, displacement XYZ was included, but not

displacement2, as any error in connecting the two surface units along the track would be propagated. As a separate example, all

acceleration measurements were also excluded, as they depend on velocity measurements, which depend on the displacement.

This would compound any ‘‘displacement error’’. Redundant features were preserved (such as standard deviation vs. variation of

speed along track), as the XGboost classifier would only select one parameter to analyze at a time, thereby self-excluding the effect

of redundant parameters. To normalize the dynamic range, all intensity-related variables (e.g., Mean Intensity, Max Intensity, Min In-

tensity, etc.) and all size-related variables (e.g., Area, Volume, Number of Voxels, etc.) were then log transformed.

XGboost Decision Trees Ensemble Binary Classifier
To build the classifier and make predictions, all data were further processed as follows. For each cell, 19 out of the 36 variables were

selected as features of interest (see Data Sharing and Availability for complete list). In this subset, all track-specific (as opposed to

surface-specific) parameters were removed in order to focus the decision tree on each surface (or TCR microcluster), rather than

each track, as an individual unit. The only exception was Track Duration, which is important for lifetime distribution studies. For a

series of surface modules that were assigned to the same track by Imaris, the track duration feature values were defined as the tem-

poral length of that track (i.e., the same value for surface modules of the same track). In addition, position XYZ was removed, as the
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position of a surface is always relative to the orientation of the cell in that particular video, therefore irrelevant to compare across

videos. The chosen statistics from all microclusters on all cells were then pooled for each group to avoid bias on the biological vari-

ation from cell to cell. Surface modules with Mean Intensity (Imean) values lower than mean(Imean)-1.53IQR(Imean) were removed as

they are likely to be noise rather than a true surface module. Then, all statistics were standardized: x�x
SDðxÞ.

The processed data were then used to train a binary classifier to differentiate between microclusters from resting cells and micro-

clusters from stimulated cells as follows. Of the four groups of cell types, microclusters from stimulated blast T cells and resting naı̈ve

T cells were chosen to train the classifier, which was later tested on the stimulated naı̈ve cells and resting blast cells. This division of

cell typeswas chosen for two reasons: (1) to avoid any strong correlation within the same cells; and (2) to test against the confounding

effect of ‘‘past stimulation’’ (i.e., naı̈ve vs. blast). To build the classifier, a ‘‘train-test-validate’’ approach was used to avoid overfitting

(Figure S1I). Thus, the processed data of stimulated blast T cells and resting naı̈ve T cells were divided into a training set (75%;

117,066 surface modules), validation set (17.5%; 27,316 surface modules) and internal test set (7.5%; 11,705 surface modules).

The binary classifier was built as a XGBoost logistic regression decision tree ensemble, using the caret package (v.6.0) in R, with

5-fold cross-validation and the following parameters: nrounds = 150; max_depth = 3; eta = 0.4; gamma = 0; colsample_bytree =

0.8; min_child_weight = 1; and subsample = 1. Feature importance was then assessed using the SHAP values extracted from the

xgb.plot.shap function. All subsequent plots were constructed using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.

Finally, the model was tested on every surface module (i.e., TCR microclusters) from new data (stimulated naı̈ve and resting blast

categories) to predict whether these TCRmicroclusters were from stimulated blast T cells or from resting naı̈ve T cells. The final label

was assigned to be the one with greater predicted probability (i.e., either stimulated blasting T cells or resting naı̈ve T cells).

XGboost Decision Tree Ensemble Softmax Classifier
To differentiate multiple ligands, a separate multi-class XGboost classifier was constructed as follows. For each cell, the same 19 out

of 36 variables as used for the initial XGboost Decision Tree Ensemble Binary Classifier were selected; however, a 20th variable,

average distance to antigen presenting cell, was added. The last feature was not applicable to the binary classifier above because

the resting cells do not encounter antigen presenting cells, but it is applicable to all classes here. Surfacemodules withMean Intensity

(Imean) values lower thanmean(Imean)-1.53IQR(Imean) were removed since they are likely to be noise rather than a true surfacemodule.

Then, all statistics were standardized: x�x
SDðxÞ.

The processed data ofmicroclusters fromblasting T cells stimulated byMCC, 102S, and K5were pooled and divided into a training

set (75%; 126,254 surface modules), validation set (17.5%; 29,460 surface modules) and test set (7.5%; 12,623 surface modules).

The softmax classifier was built as a XGBoost decision tree ensemble using softmax probabilities as the objective, using the caret

package (v.6.0) in R, with 5-fold cross-validation and the following parameters: nrounds = 500; max_depth = 6; eta = 0.3; gamma = 0;

colsample_bytree = 1; min_child_weight = 1; and subsample = 1. The final model was used to re-predict the probability of every sur-

facemodule from the blasting T cells stimulated byMCC, 102S, andK5. The final label was assigned to be the peptide (MCC, 102S, or

K5) with greatest predicted probability. Results were plotted using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.

Weibull Distribution
Weibull distribution (Lawless, 2002) is a commonly used statistical distribution that describes lifetime distribution. The three-param-

eter Weibull model we used is of the form:

fðTÞ = b

h

�
T � T0

h

�b�1

exp

�
�T � T0

h

�b

where:

TR0; h>0; b>0

A Weibull distribution was used to fit the raw track duration values for each group using the WeibullR (v.1.0.10) package in R. The

location (T0), shape (b), and scale (h) parameters were extracted directly from the model. The mean life-time values were calcu-

lated as:

T = T0 + h,G

�
1

b
+ 1

�
:

UMAP
Pre-processed datawere separately processed as an independent validation of the XGboost classifier. For each cell, the same 19 out

of the 37 variables as used for the XGboost classifier were selected as features of interest (see Data Sharing and Availability for com-

plete list). The chosen statistics from all cells of all groups were then pooled for each group to avoid bias on the biological variation

from cell to cell. Surfacemodules with Mean Intensity (Imean) values lower thanmean (Imean)-1.53IQR (Imean) were removed since they

are likely to be noise rather than a true surface module. Then, all statistics were then standardized: x�x
SDðxÞ. Then data of the groups of
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interest were then pooled and used to build a UMAP (McInnes et al., 2018) using the uwot (v.0.1.3) package in R with parameters:

min_dist = 0.1; n_neighbors = 25; all others set to default. All subsequent plots were constructed using the ggplot2 (v.3.2.0) and

the ggpubr (v.0.2.1) package in R.

Diffusion Maps
To construct the diffusionmaps (Coifman and Lafon, 2006), pre-processed data were further processed similarly to the above UMAP,

except that only seven variables were selected (see link in Data and Software Availability for complete list). These seven variables

were selected from the distinguishing features identified by both the supervised XGboost classifier and the unsupervised UMAP.

First, the six features from the SHAP value analysis were chosen. However, ‘‘Time since Track Start’’ and ‘‘Track Duration’’ are

partially redundant. While ‘‘Track Duration’’ indicates the stability of the microcluster on the surface of the T cell, ‘‘Time since Track

Start’’ simply indicates the order the microclusters appear along this track, and therefore has less physical meaning. Thus, ‘‘Track

Duration’’, was selected and ‘‘Time since Track Start’’ was excluded. In addition, ‘‘Mean Intensity’’ was selected over ‘‘Median In-

tensity’’, since the former is a more common analysis metric. Finally, ‘‘Area’’ and ‘‘Speed’’ were also selected, as they encode inde-

pendent information that have not been captured by the initial 5 features; for instance, surface units with the same volume can have

different shapes, thereby lending to different surface area.

To conserve computational resources, a subset of 8,000 surface modules were randomly sampled from every group. Data from

four core groups, including stimulated blast T cells, stimulated naı̈ve T cells, resting naı̈ve T cells, and resting blast T cells, were

pooled and used to build the diffusion maps using the diffusionMap (v.1.1.0.1) package in R with default parameters. Nystorm

out-of-sample extension was then used to estimate the diffusion coordinates of surface modules of other groups. All subsequent

plots were constructed using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.

Pseudo-Energy Plot
For each group, the diffusion coordinates of the 8,000 sampled surface modules were used to build its pseudo-energy plot. The local

probability density, bpð x!Þ, at each data point on the diffusion map was estimated using the ks-package (1.11.5) in R. The density

values from the diffusion map embedding coordinates can be used to derive Free Energy Surface as follows:

bGð x!Þ = � lnbpð x!Þ+ const

Where b = 1
kBT

; G is theGibbs free energy, and bpð x!Þ is the estimated local probabilistic density on the diffusionmap. Here, we used�
lnbpð x!Þ as a pseudo-energy since we cannot experimentally determine the constant term, but this pseudo-energy should be linearly

related to the Gibbs free energy and thus gives a good representation of the free energy surface (Ferguson et al., 2010).
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